Heximal, or: how to really read hexadecimal

Many debates have been had about the "correct" way to pronounce hexadecimal numbers. If you ask me, the best way to do it is to just read the letters out loud, or use the Nato phonetic alphabet. But what if you don't want to simply read hexadecimal? What if you want to.... count?

Many brave souls have tried, but more often than not, the names seem utterly nonsensical. Christeen, dickety-one, and fimteek are just some of the horrors found in existing ideas for hexadecimal numbering. Armed with inspiration from jan Misali's seximal, i set out to make a better system. Introducing: heximal.

Counting from 1–F

Counting from 0–C0 is rather easy:

Number Word Pronunciation
1 one /wɐn/
2 two /tuː/
3 three /θɹiː/
4 four /fɔːɹ/
5 five /faɪ̯v/
6 six /sɪks/
7 seven /ˈsɛ.vən/
8 eight /eɪ̯t/
9 nine /naɪ̯n/
A (10) ten /tɛn/
B (11) eleven /ɪ.ˈlɛ.vən/
C (12) twelve /twɛlv/

Where we go from here is a challenge. Given that this is base sixteen, we can't exactly say thirteen, fourteen, or fifteen; so, we instead use shortened forms of the Nato phonetic alphabet's letters: del from Delta, eck or ech1 from Echo, and fox from Foxtrot.

Number Word Pronunciation
D (13) del /dɛl/
E (14) eck or ech /ɛk/ or /ɛx/
F (15) fox /fɒks/

...And further!

10 is, of course, called hex. There's no messing about with thirteen-type formulations; right after hex comes hex-one.

Number Word Pronunciation
10 (16) hex /hɛks/
11 (17) hex-one /hɛks ˈwɐn/
12 (18) hex-two /hɛks ˈtuː/
13 (19) hex-three /hɛks ˈθriː/
etc.
1F (31) hex-fox /hɛks ˈfɒks/

Numbering continues along roughly the same lines as the decimal -ty sequence; in this case, the relevant suffix is -ex. (Some familiar numbers are included in the table below to aid recognition.)

>
Number Word Pronunciation
20 (32) twenex /ˈtwɛn.ɛks/
21 (33) twenex-one /ˈtwɛn.ɛks ˈwɐn/
2A (42)2 twenex-ten /ˈtwɛn.ɛks ˈtɛn/
30 (48) thirex /ˈθɜːɹ.ɛks/
40 (64) fourex /ˈfɔːɹ.ɛks/
50 (80)3 fiffex /ˈfɪf.ɛks/
60 (96) sixex /ˈsɪks.ɛks/
69 (107) sixex-nine4 /ˈsɪks.ɛks ˈnaɪ̯n/
70 (112) sevenex /ˈsɛ.vən.ˌɛks/
7A (122)5 sevenex-ten /ˈsɛ.vən.ˌɛks ˈtɛn/
80 (128) eightex /ˈeɪ̯t.ɛks/
90 (144) ninex /ˈnaɪ̯n.ɛks/
A0 (160) tenex /tɛn.ɛks/
B0 (176) elevex /ɪ.ˈlɛv.ɛks/
C0 (192) twelvex /ˈtwɛlv.ɛks/
D0 (208) delex /ˈdɛl.ɛks/
E0 (224) eckex or echex /ˈɛk.ɛks/ or /ˈɛx.ɛks/
F0 (240)6 foxex /ˈfɒks.ɛks/
FF (255) foxex-fox /ˈfɒks.ɛks ˈfɒks/

Greater and greater numbers

The logical term for a value of 100 is, of course, a byte.

Number Word Pronunciation
100 (256) one byte /ˈtwɛn.ɛks/
3E8 (1000) three byte eckex-eight /ˈtwɛn.ɛks/
7E4 (2020)7 seven byte eckex-four /ˈtwɛn.ɛks/

The term kay for 103 (4096) derives from "4K". Tortured etymology, i know, but you think of something better...

Number Word (rounded to 3 s.f.)
1000 (4096) one kay
2710 (10 000) two kay seven byte hex
2EF4 (12020) two kay eck byte foxex-four8

Many programming languages refer to numbers smaller than 104 (65 536) as shorts, so that's what we'll call said number.

Number Word (rounded to 3 s.f.)
1 0000
(65 536)
one short
1 6B00
(93 000)
one short six kay eleven byte9
F 4240 (1 000 000) fox short four kay two byte
18 8E80 (1 609 334) hex-eight short eight kayA
27 6000 (c. 2 580 000) twenex-seven short six kayB
109 0000 (c. 17 400 000) one byte nine shortC
138C E200 (c. 328 000 000) one kay three byte shortD
3B9A CA00 (1 000 000 000) three kay eleven byte short

We can continue on, extending short in the vein of decimal's -illion series.

Number Word Decimal
108 One bort 4.29x109
1.CFx108 One point twelve fox bortE 7.76x109
10C One trort 2.80x1014
8.E9x109 Eight point eck nine trortF 4.01x1016
1010 One quadrort 1.84x1019
2.58x1010 Two point five eight quadrort10 4.33x1019
7.F8x1013 Seven kay fox byte eightex quadrort11 6.02x1023
1014 One quinort 1.21x1024
1018 One sexort 7.92x1028
101C One septort 5.19x1033
1020 One octort 3.40x1038
1024 One nonort 2.23x1043
1028 One decort 1.46x1048
102C One elevort 9.58x1052
1030 One dozenort 6.28x1057
1034 One delort 4.11x1062
1038 One eckort or echort 2.70x1067
103C One foxort 1.77x1072
1040 One hexort 1.16x1077
1044 One hexishort 7.59x1081
1048 One hexibort 4.97x1086
1080 One bihexort 1.34x10154
10C0 One trihexort 1.55x10231
10100 One quadrihexort; one hexgol 1.80x10308
10400 One bytort 1.04x101233
104000 One kayort 2.00x1019278

I've decided to end the naming scheme just short (heh) of what would otherwise be a "shortort", to save it from collapsing in on itself. This means that the largest named number is...

Number Word Decimal
1040000-1 Fox kay fox byte foxex-fox foxikayfoxibytifoxihexifoxort, fox kay fox byte foxex-fox foxikayfoxibytifoxihexeckort, [...] fox kay fox byte foxex-fox 6.74x10315652

...
Oh, go on then. Two more.

Number Word Decimal
1010100 One hexgolplex 102.16x10308
101010100 One hexgolplexian 10102.16x10308
+---------------------+
|\* marijnflorence. */|
|\\  neocities.org  //|
| _\~._.~='*'=~._.~/_ |
||  *   <+   ->   *  ||
|| \  .   `O'   ,  / ||
||--+_|    +    |_+--||
||    `\       /'    ||
||  ,~. (@)~(@) ,~.  ||
||~'@@( )'(@)`( )@@`~||
||@@@@@( )( ( )( )@@@||
::@@@( )@( )( ) )@@@@::
 \\@@@( ) )( ) )@@@@//
  \\@@@@( )( )@@@@@//
   \\@@@@@( )@@@@@//
    `:\@@@@*@@@@/:'
      `:-.@@@.-;'
        `-----'
  

Page created: 2EF4-2-0F (12020-02-15)
Page last updated: 2EF4-2-0F (12020-02-15)

← Back to home